

Managing Microsoft 365 in true DevOps
style with Microsoft365DSC and Azure
DevOps

Author: Yorick Kuijs

Cloud Solution Architect @ Microsoft

yorick.kuijs@microsoft.com

Date: 23 November 2022

Version: v2.0

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 2

Disclaimer

This document is provided “as-is.” Information and views expressed in this document,

including URL and other Internet web site references, may change without notice. You bear

the risk of using it.

This document does not provide you with any legal rights to any intellectual property in any

Microsoft product. You may copy and use this document for your internal reference

purposes.

© 2022 Microsoft Corporation. All rights reserved.

Changelog

Version Date Author Changes

1.0 1 November 2020 Yordan Bechev

Yorick Kuijs

First release

1.0.1 3 November 2020 Yorick Kuijs Updated incorrect links

1.1 2 December 2020 Yorick Kuijs Incorporated feedback from Zaki Semar Shahul

Added Azure Conditional Access for the used service account

1.2 1 October 2021 Yorick Kuijs Corrected issues

Added Certificate authentication scenario

1.21 23 December 2021 Yorick Kuijs Corrected download link to scripts after migration to new

website

2.0 23 November 2022 Yorick Kuijs Major update: Combining scenarios, demonstrating new

flexible setup.

Reviewed by Brian Lalancette, Andi Krüger, Jeffrey Rosen,

Andrew Piskai, Dean Sesko and Albert Boland.

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 3

Table of Contents

1 Introduction ... 5

1.1 Microsoft 365 and DevOps ... 5

1.2 Setup ... 6

1.3 Assumptions ... 6

2 Solution Description ... 8

2.1 DevOps Configuration .. 8

2.1.1 Build Pipeline .. 8

2.1.2 Release Pipeline ... 8

2.2 DSC configuration .. 9

2.3 Customize the solution .. 9

2.4 App Registration Overview ... 10

3 Prerequisites .. 11

3.1 Virtual Machine ... 11

3.2 Azure DevOps .. 11

3.3 Azure ... 11

3.4 Microsoft 365 ... 11

3.5 Licenses .. 12

4 Preparation .. 13

4.1 Preparing the Virtual Machine (Phase 1) ... 13

4.1.1 Configure PowerShell requirements .. 13

4.1.2 Create Azure DevOps agent service account ... 13

4.1.3 Creating the Microsoft 365 authentication certificate .. 14

4.1.4 Configure the Local Configuration Manager .. 14

4.2 Preparing the Microsoft 365 tenant .. 17

4.2.1 Create an account for DSC in Microsoft 365 .. 17

4.2.2 Create an App Registration in Azure Active Directory .. 18

4.2.3 Add the App Registration to the Exchange Administrators role 20

4.3 Preparing the Azure DevOps environment .. 22

4.3.1 Create a new project in Azure DevOps ... 22

4.3.2 Create an Agent Pool in Azure DevOps.. 23

4.3.3 Create Personal Access Token .. 25

4.4 Preparing the Virtual Machine (Phase 2) ... 27

4.4.1 Installing and configuring the Azure DevOps Agent on the virtual machine 27

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 4

4.5 Preparing the Azure Key Vault .. 32

4.5.1 Create an App Registration ... 32

4.5.2 Granting the App Registration Reader permissions to the Azure Subscription .. 34

4.5.3 Create a new Azure Key Vault .. 37

4.5.4 Adding a Service Connection to Azure to the Azure DevOps project 40

5 Configuring Azure DevOps .. 45

5.1 Populate scripts... 45

5.2 Add secrets to your Key Vault ... 51

5.3 Configure Azure DevOps project ... 52

5.3.1 Create Build pipeline .. 52

5.3.2 Create the Deployment Release pipeline ... 55

5.3.3 Validate that changes to the config are deployed successfully 63

5.3.4 Create a scheduled Compliancy Test Release pipeline ... 65

6 Troubleshooting... 73

6.1 Error: Service connection could not be found... 73

6.2 Error: Release pipeline throws an error about the PSGallery not found 73

7 Security Enhancements ... 74

7.1 Using Azure Conditional Access to secure service account ... 74

8 Script details .. 79

9 Learning materials ... 82

9.1 Desired State Configuration ... 82

9.2 Microsoft365DSC.. 83

9.3 Git ... 83

10 Acronyms .. 84

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 5

1 Introduction
Microsoft 365 is a very popular productivity cloud solution. Each customer has their own

tenant which stores their data, applications and configuration. Using the Administration

Portal (https://admin.microsoft.com) each customer can configure and manage their tenant.

Many companies are adopting DevOps practices and are interested in applying them against

Microsoft 365 as well. Infrastructure as Code and Continuous Deployment/Continuous

Integration (CD/CI) are important concepts in DevOps.

Microsoft365DSC is a PowerShell Desired State Configuration (DSC) module which can

configure and manage Microsoft 365 in a true DevOps style: “Configuration-as-Code”.

1.1 Microsoft 365 and DevOps
When you perform management of your Microsoft 365 tenant manually, there is no way to

consistently deploy changes and to monitor for changes. By using “Configuration-as-Code”

principles, you document/define the configuration of your tenant in code. You can then

deploy this configuration programmatically to your tenant and periodically check if the

defined/intended configuration still matches the actual configuration. The tool that allows

you to do this is Microsoft365DSC (https://microsoft365dsc.com).

By adding CD/CI capabilities, for example by using Azure DevOps, you can also add

additional quality gates making sure changes to your configuration are deployed in a

controlled and consistent way.

Steps:

1. Admin1 updates the configuration in his personal copy (fork)

2. When done, Admin1 creates a Pull Request to have his changes merged into the Main

repository

https://admin.microsoft.com/
https://microsoft365dsc.com/

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 6

3. The quality assurance process starts:

a. An automated process runs certain quality checks against the Pull Request

b. Other admins validate the changes via a peer review process.

4. When both succeed, the Pull Request is merged.

5. The Merge initiates a Build pipeline, which retrieves credentials from Azure Key Vault

and compiles what are known as MOF files

6. Once the Build pipeline completes successfully, a Release pipeline starts, which

deploys the generated MOF file to the Staging environment

7. After a successful deployment, the Release pipeline sends a notification to the admins

and waits for approval

8. The admins check if the change has been deployed successfully and if the desired

result has been achieved. If that is the case, they approve the deployment.

9. After the approval is given, the Release pipeline performs the deployment to the

Production environment

10. The change has now been automatically and consistently deployed to all

environments

1.2 Setup
In this document we are going to describe the process and steps required to implement a

basic Configuration-as-Code setup using Microsoft365DSC, Azure DevOps and Azure Key

Vault. Changes to Microsoft 365 are made within a Git repository in Azure DevOps and then

fully and automatically deployed to a Microsoft 365 tenant.

The setup we are using looks like this:

1.3 Assumptions
This document assumes you are familiar with creating and deploying PowerShell Desired

State Configurations (DSC).

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 7

IMPORTANT: If you are new to PowerShell DSC, please first check out the first two links in

paragraph 9.1. These are recordings of two very good PowerShell DSC training courses that

will give you a good understanding of what PowerShell DSC is and how it works. A good

foundation for the skills you need when working with PowerShell DSC.

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 8

2 Solution Description
This solution consists of multiple components. In this chapter, the solution is described in

more detail.

2.1 DevOps Configuration
In Azure DevOps, you can use various components:

- Build and Release pipelines

- Microsoft Hosted Agents and Self-Hosted Agents

This solution uses all these components.

2.1.1 Build Pipeline

The Build pipeline is responsible for running the Build script, which compiles the DSC

configuration into a MOF file. It is using Microsoft Hosted agents to run the Build script, since

the requirements for compiling DSC configurations are limited and can easily be covered by

the Microsoft Hosted agents.

The Build script prepares the Microsoft Hosted agent, reads the data files, retrieves the

required information from Azure Key Vault and uses this information to compile the MOF file.

Each environment has its own data file (in the DataFiles folder) and will compile its own MOF

file.

NOTE: This solution only uses one environment, but you can extend this if needed.

The result of the Build script is an Output folder in which all components are placed that are

required for the deployment of the MOF files. These are:

- The MOF files themselves

- The deployment script

- The DSCResources.psd1 file, to determine which version of Microsoft365DSC is used

and must be installed.

At the end of the pipeline, the entire Output folder is packaged as a Zip file and attached to

the Build pipeline as an artifact.

2.1.2 Release Pipeline

This solution creates two Release pipelines:

- For deploying the DSC configuration to the environment(s)

- For checking the compliance of the environment(s) with the latest configuration

The Release pipelines use Self Hosted agents (on a virtual machine) to run the corresponding

scripts.

The deployment pipeline uses the Build artifacts to deploy the generated MOF file to the

corresponding environment. The deploy script prepares the self-hosted agent by installing

Microsoft 365 authentication certificate (if not present), installing Microsoft365DSC (including

all required modules) and deploying the MOF file to the specified environment. Each

environment will be its own stage in the Release pipeline.

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 9

NOTE: This solution only creates one Stage for one environment, but more stages can be

created if needed.

The compliance pipeline uses the Build artifacts to check if all environments are still

compliant with the desired state. It retrieves all MOF files in the artifact and runs a

compliance check for each of them.

When done, it will create a summary report and either send this via an e-mail or via a Teams

channel message. This is configurable in the script.

2.2 DSC configuration
The DSC configuration uses so-called Composite Resources, which are a way to structure DSC

resources into separate configurations. So instead of creating:

One huge DSC configuration with all DSC resources for all workloads, which will

become very hard to read and maintain.

You now have multiple smaller and dedicated composite resources and one main DSC

configuration (M365Configuration.ps1) which is responsible for calling each of the composite

resources.

For this purpose, a M365Config module is created (included in the scripts) which contains a

composite resource for each workload. Each composite resource contains all DSC resources

for that workload, which makes it much easier to read and maintain.

Note: See the link in “Composite Resources” paragraph 9.1 for more information on

Composite resources

2.3 Customize the solution
Of course, you can update the setup described and/or the DSC configuration to fit your

specific situation. Better yet, you should update the sample configuration with your own

settings!

As mentioned earlier, the current solution only uses a single Microsoft 365 tenant /

environment (named “Production”), but this can be extended to include multiple

environments like Test and Acceptance tenants. To do this:

- Create an account and app registration in each tenant (paragraph 4.2)

- Add a data file to the DataFiles folder for each tenant and update this with the correct

information for that tenant (paragraph 5.1)

- Populate the secrets for that environment in Azure Key Vault (paragraph 5.2)

- Add a new stage to the release pipeline for each new environment. Make sure you

update the value of the “Environment” parameter with the name of the newly created

data file (paragraph 5.3.2)

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 10

The solution is targeted to a specific version of Microsoft365DSC which is v1.22.1019.1 - the

most recent version at the time of writing. If you want to use a different version of

Microsoft365DSC, edit the DscResources.psd1 file in the repository and enter the desired

version.

2.4 App Registration Overview
This solution is using various App Registrations in various places. This paragraph provides an

overview of all user app registrations and their purpose. The rest of this document refers to

the numbers in this overview:

Nr Name Description

1. Microsoft 365 authentication This app registration is used by Microsoft365DSC to

authenticate with the Microsoft 365 tenant using

application credentials. Each tenant you are managing

using this solution requires its own app registration.

The process to create this app registration can be found in

paragraph 4.2.2.

2. Azure authentication The Azure DevOps project is using this app registration to

authenticate with Azure and retrieve credentials from the

Azure Key Vault.

The process to create this app registration can be found in

paragraph 4.5.1.

3. Mail authentication If you choose to use e-mail to send status reports, you

need an app registration to authenticate against Microsoft

365 so you can use that as SMTP server.

The process to create this app registration can be found

here:

https://learn.microsoft.com/en-us/graph/auth-register-

app-v2

https://learn.microsoft.com/en-us/graph/auth-v2-

service#2-configure-permissions-for-microsoft-graph

https://learn.microsoft.com/en-us/graph/auth-register-app-v2
https://learn.microsoft.com/en-us/graph/auth-register-app-v2
https://learn.microsoft.com/en-us/graph/auth-v2-service#2-configure-permissions-for-microsoft-graph
https://learn.microsoft.com/en-us/graph/auth-v2-service#2-configure-permissions-for-microsoft-graph

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 11

3 Prerequisites

3.1 Virtual Machine
To deploy DSC configurations, we require a machine that will serve to perform the actual

deployment to Microsoft 365. This can either be a physical or virtual machine; in this guide

we assume the use of a virtual machine. The requirements for this virtual machine are:

1. Windows Server 2016 / Windows 10 or above

o Recommended to have at least 2 CPUs and 8GB of memory.

o x64 version is required.

Note: Using the ARM version of Windows is not supported

2. .Net Framework 4.7 or higher

o https://dotnet.microsoft.com/download/dotnet-framework

3. PowerShell v5.1

o Installed by default on all current versions of Windows Server

Note: Later PowerShell versions aren’t supported at this time, because some modules

used by Microsoft365DSC don’t support those PowerShell versions yet.

3.2 Azure DevOps
We are using Azure DevOps to store, compile and deploy the configurations. This means we

need:

1. An Azure DevOps tenant and permissions to configure this tenant

2. A project in Azure DevOps

3.3 Azure
To be able to connect to Microsoft 365, you need credentials and a way to store these

securely. This solution uses Azure Key Vault to store the password, application secret or

certificate securely. The pipelines use Azure Key Vault to retrieve the required information

when this is needed.

3.4 Microsoft 365
We also need a Microsoft 365 tenant, which will be managed using Microsoft365DSC.

In this tenant we need:

1. An account with Global Administrator privileges, used to access the Admin Portal

2. A service account with Global Administrative privileges, used to deploy settings using

DSC

o This account does not support being configured to use Multi-Factor

Authentication

o The actual required permissions will depend on the resources used and

workloads configured (e.g. Exchange Online, Teams)

3. An App Registration with the appropriate permissions to Microsoft 365

o Steps to create this app registration are described in paragraph 4.2.2 of this

whitepaper

https://dotnet.microsoft.com/download/dotnet-framework

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 12

3.5 Licenses
You can either use a fully licensed or a trial version of the above-mentioned products.

Microsoft365DSC is open-source and available under a MIT license

(https://github.com/microsoft/Microsoft365DSC/blob/master/LICENSE), which means that

you do not need to purchase any license and can use it for free.

https://github.com/microsoft/Microsoft365DSC/blob/master/LICENSE

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 13

4 Preparation

4.1 Preparing the Virtual Machine (Phase 1)

4.1.1 Configure PowerShell requirements

This solution needs a few components to be installed for it to work. In this step we are going

to install these components:

• Log on to the virtual machine with Administrative credentials

• Open an elevated Windows PowerShell window

• Update PowerShellGet by executing the following commands:

Note: If you run into issues downloading these updates, check out the following

article: https://devblogs.microsoft.com/powershell/powershell-gallery-tls-support/

Note 2: It is possible that the PowerShell Gallery isn’t registered correctly in your

installation. In that case “Get-PSRepository” will not return any results. If so, run the

following command:

• Install the Az.KeyVault module by executing the following command:

This command should install the Az.KeyVault and Az.Accounts modules to

“C:\Program Files\WindowsPowerShell\Modules” folder.

• (Windows client versions only) Enable Windows Remote Management by executing

the following command:

4.1.2 Create Azure DevOps agent service account

The Azure DevOps agent needs a service account with the correct permissions. In this step we

are going to create this account and assign local Administrator permissions:

• Log onto the virtual machine

• Open “Computer Management”

• Create a local service account, for example: “DevOpsAgent”

This account will be used to run the Azure DevOps agent with, which is used by Azure

DevOps to deploy configurations to Microsoft 365.

Note: Make sure you use a long and complex password.

• Add this account to the local Administrators group

Install-PackageProvider NuGet -Force

Install-Module -Name PowerShellGet -Force

Register-PSRepository -Default

Install-Module Az.KeyVault -Force

Enable-PSRemoting -Force

https://devblogs.microsoft.com/powershell/powershell-gallery-tls-support/

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 14

4.1.3 Creating the Microsoft 365 authentication certificate

To authenticate against Microsoft 365, we need a certificate. In this step we are going to

create a certificate:

• Log onto the virtual machine with administrative credentials

• Open an elevated Windows PowerShell window

• Create and export a new authentication certificate by running the following

PowerShell commands:

o NOTE: Update the [PASSWORD] parameter to your own password

For more information on creating a certificate for application authentication, see:

https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-self-

signed-certificate

• Copy the created file “C:\M365ClientCert.cer” and store it for later use

• Run the following command, copy the displayed Thumbprint and document it for

later use

Note: Repeat these steps for each environment you are going to manage (only one

environment described in this whitepaper). More information about implementing more

environments, see paragraph 2.3.

4.1.4 Configure the Local Configuration Manager

We need an encryption certificate to encrypt the credentials used in the DSC configuration. In

this step we are creating this certificate:

• Log onto your virtual machine with administrative credentials

• Open an elevated PowerShell ISE and run the following command

$clientCert = New-SelfSignedCertificate -Subject

"CN=Microsoft365DSC" -CertStoreLocation "Cert:\LocalMachine\My"

-KeyExportPolicy Exportable -KeySpec Signature

$password = ConvertTo-SecureString -String "[PASSWORD]" -

AsPlainText -Force

Export-PfxCertificate -Cert $clientCert -FilePath

C:\M365ClientCert.pfx -Password $password

Export-Certificate -Cert $clientCert -FilePath

C:\M365ClientCert.cer

$clientCert.Thumbprint

$certForDSC = New-SelfSignedCertificate -Type

DocumentEncryptionCertLegacyCsp -DnsName 'DSCNode Document

Encryption' -HashAlgorithm SHA256 -NotAfter (Get-

Date).AddYears(10)

https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-self-signed-certificate
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-self-signed-certificate

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 15

NOTE: This will create a self-signed signing certificate for the Local Configuration

Manager to use. You can also use a certificate created via a Certificate Authority.

• Run the following command and document the value:

• Export the certificate to a CER file (required during the MOF compilation) by running

the following command:

• In the PowerShell window, browse to the folder “C:\M365Dsc”

o Create this folder if it does not yet exist

• Paste the following code in the white script pane:

• Run the code (press F5 or click the green “Play” icon)

• A prompt will be shown indicating that the localhost.meta.mof has been created.

Note the output path and replace the string <OutputDirectory> with it, below.

$certForDSC.Thumbprint

Export-Certificate -Cert $certForDSC -FilePath

C:\DSCCertificate.cer

Configuration ConfigureLCM

{

 Import-DscResource -ModuleName

PsDesiredStateConfiguration

 node localhost

 {

 LocalConfigurationManager

 {

 ConfigurationMode = "ApplyOnly"

 CertificateId = $certForDSC.Thumbprint

 }

 }

}

ConfigureLcm

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 16

• Run the following command to deploy the Local Configuration Manager config:

The output should look like this:

• To validate a successful configuration of the thumbprint, run Get-

DscLocalConfigurationManager. The “CertificateID” parameter should now show the

Certificate Thumbprint of your certificate and the “ConfigurationMode” should show

“ApplyOnly”.

Note: We configure the ApplyOnly setting because we will use a pipeline to

implement the monitoring functionality, later in this document.

• Optional: Secure your certificate

o Export the certificate to PFX format

o Delete the certificate from the certificate store

o Reimport the certificate from the PFX file but do not select the option to make

the private key exportable

o Import the PFX file into Azure Key Vault for secure backup

Set-DscLocalConfigurationManager -Path <OutputDirectory>

-Verbose

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 17

4.2 Preparing the Microsoft 365 tenant

4.2.1 Create an account for DSC in Microsoft 365

The solution needs an account with administrative privileges that can be used to manage the

Microsoft 365 settings. In this step we are creating such an account and assigning it the

Global Administrator permissions:

• Open an Internet browser

• Browse to the Microsoft 365 Admin Portal (https://admin.microsoft.com)

• Create a new account

o For example: “DscAdmin”

o Do not assign any license

o Grant the user Global Admin permissions

Note: More limited permissions may suffice, depending on the resources used in your

configuration

• Make sure this account does not have Multi-Factor Authentication (MFA) enabled!

4.2.2 Create an App Registration in Azure Active Directory

Some of the Microsoft 365 workloads also support authentication using application

credentials. To use this, an app registration must be created in Azure Active Directory1, which

is granted the correct permissions.

Microsoft365DSC has a cmdlet that can create and manage an app registration for you,

including permissions. In this we will create a new app registration using this cmdlet:

• Log onto your virtual machine

• Open an elevated PowerShell window

• Install the most recent versions of Microsoft365DSC and Az.Resources modules by

running the following command:

• Run the following cmdlet. Replace “<APPNAME>” with the name you want to use for

the app registration, for example “Microsoft365DSC”:

Note: This command configures all permissions required in this solution. If you add

more resources, you might need to add more permissions as described on the

resources pages on https://microsoft365dsc.com.

1 Use App Registration nr 1. See paragraph 2.3 for more information.

Install-Module Microsoft365DSC, Az.Resources

Update-M365DSCAzureAdApplication -ApplicationName '<APPNAME>'

-Permissions @(@{ Api =

"SharePoint";PermissionName="Sites.FullControl.All"},@{ Api =

"Exchange";PermissionName="Exchange.ManageAsApp"}) -

AdminConsent -Type Certificate -CertificatePath

C:\M365ClientCert.cer

https://admin.microsoft.com/
https://microsoft365dsc.com/

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 18

• The script outputs the ApplicationID and TenantID. Copy this information and

document it for later use.

Important: Only perform the next steps if the script shows an error that consent could not

be provided successfully:

• Open the Azure Portal (https://portal.azure.com)

• Log on using an account from the same domain as your Microsoft 365 tenant

• Go to Azure Active Directory

• Under “Manage”, click “App registrations”

• Click on the app that was created using the “Update-M365DSCAzureAdApplication”

cmdlet

• Click the option “API permissions”

• Click “Grant admin consent for <org name>” to grant these permissions

https://portal.azure.com/

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 19

• Click “Yes” to confirm granting the permissions

• You should receive the message that the permissions have been granted and see that

the status is “Granted for <org name>”

4.2.3 Add the App Registration to the Exchange Administrators role

When you are using app credentials to manage Exchange (as is done in this solution), you

need to add the app registration to the Exchange Administrators role group. That way the

app registration has the correct permissions to manage Exchange. In this step, you will add

the created app registration to the “Exchange Administrator” role group:

• Open the Azure Portal (https://portal.azure.com)

• Log on using an account from the same domain as your Microsoft 365 tenant

• Go to Azure Active Directory

• Under “Manage”, click “Roles and administrators”

https://portal.azure.com/

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 20

• Look for the “Exchange Administrator” role

• Click the “Add assignments” button

• Search for the App Registration that was created in the previous paragraph by entering
“Microsoft365DSC”. Then select the app that appears, make sure it appears under “Selected
items” and click “Add”.

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 21

• In the upper-right corner, a message appears confirming the successful addition of the app
registration to the group

• The app registration should be present in the group assignments

4.3 Preparing the Azure DevOps environment

4.3.1 Create a new project in Azure DevOps

We need a new project in Azure DevOps in which the DSC configurations will be stored and

from where the deployments will be executed. In this step we will create a new project:

• Log into the Azure DevOps portal

• Click the “New project” button in the upper-right corner

• Enter “M365Automation” as project name (or use your own name) and select

“Private”. Leave all other settings as default and click “Create”

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 22

• Once the project is created, it is opened automatically

4.3.2 Create an Agent Pool in Azure DevOps

The Azure DevOps agents will perform the actual deployment. Each self-hosted agent needs

to be placed in its own Agent Pool. In this step, we will create a dedicated Agent Pool for this

solution:

• Browse to the main Azure DevOps page

• Create a new Agent Pool

o In Azure DevOps, click "Project Settings" in the lower left corner

o Scroll down and under "Pipelines", click "Agent Pools"

o Create a new Agent Pool by clicking the "Add pool" button in the upper right

corner

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 23

o Select “Self-hosted” as “Pool type”

o Enter a Name (for example: Microsoft365DSC) and Description for the new

pool and click "Create"

o Click the newly created pool to open the pool

o Click the "New agent" button to open the required information to add a new

agent

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 24

o Copy the download link to be used later in this document

4.3.3 Create Personal Access Token

The Azure DevOps agent needs to be able to connect to Azure DevOps with the correct

credentials. It is using a Personal Access Token (PAT) to do this. In this step we will create a

new PAT to be used by the Azure DevOps agent:

• Open Azure DevOps

• Click the user icon in the upper-right corner and select the "Personal access tokens"

menu item

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 25

• Click "New Token" to create a new token

• Enter a Name and select next year (not possible to select more than a year) as

Expiration

• Click "Show all scopes", select “Read & manage” under Agent Pools, and click "Create"

to create the token

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 26

• IMPORTANT: Copy and record the generated token in a secure place. You cannot

retrieve the token at a later point in time.

• Click "Close" to close the wizard. Your token is now created.

4.4 Preparing the Virtual Machine (Phase 2)

4.4.1 Installing and configuring the Azure DevOps Agent on the virtual machine

All Azure DevOps agent prerequisites have now been configured. In this step we will install

the agent on the virtual machine:

• Connect to your virtual machine with administrative credentials

• Download the Azure DevOps agent using the download link found in the last step of

paragraph 4.3.2.

• Create a new folder e.g. C:\Agent and extract the downloaded zip to that folder

• Open an elevated Command Prompt

• Browse to the C:\Agent folder

• Run config.cmd

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 27

• Enter the Server URL as “https://dev.azure.com/<org_name>” and press [Enter]

NOTE: The agent will be unable to register if you specify the organization name

including the project name (https://dev.azure.com/<org_name>/<project>).

• Press [Enter] to use the Personal Access Token for authentication

• Paste the Personal Access Token and press [Enter]

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 28

• Enter "Microsoft365DSC" (or use the name specified earlier) as the Agent Pool and

press [Enter]

• Enter a custom Agent name or press [Enter] to use the server name (max fifteen

characters)

• The Agent checks some prerequisites. Press [Enter] to use the default work folder

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 29

• If prompted: Press Enter to acknowledge “N” for “Perform an unzip for each step”

• Type "Y" to run the agent as a service

• Press Enter to accept the default value for the “SERVICE_SID_TYPE_UNRESTRICTED”

setting

• Enter the created service account credentials in paragraph 3.1.2 (use the format

ComputerName\AccountName) and press [Enter]

• The agent is being configured. Press Enter to start the service automatically.

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 30

• Verify agent is successfully registered in Azure DevOps

o Open the Azure DevOps portal

o Click "Organization Settings" in the lower left corner

o Scroll down and under "Pipelines", click "Agent Pools"

o Click your custom Agent Pool

o Click "Agents" and validate that your agent is present and Online. The name of

the agent will be the host name of your virtual machine:

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 31

4.5 Preparing the Azure Key Vault

4.5.1 Create an App Registration

To allow Azure DevOps to retrieve secrets from Azure Key Vault, an app registration2 is

needed. In this step we are going to create this app registration:

• Log into the Azure Portal

• In the search box at the top of the page, type “Azure Active Directory” and click the

Azure Active Directory icon that is found

• Browse to the “Azure Active Directory” and select the “App Registrations” section

2 Use App Registration nr 2. See paragraph 2.3 for more information.

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 32

• To create a new App Registration, click “New registration”

• Enter “Microsoft365DSC_DevOpsPipeline” as the Name (or use your own name) and

click “Register”

• Once the App Registration has been created, make sure you save the “Application

(client) ID” and “Directory (tenant) ID” on the page that appears.

• Click the “Add a certificate or secret” link in the right column

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 33

• Click the “New client secret” link to create a new secret

• Enter “Microsoft365DSC” as the Description (or use your own value), select “24

months” as Expires and click “Add”

• Copy and document the value of the created secret in a secure place.

Note: This value will only be shown once!

4.5.2 Granting the App Registration Reader permissions to the Azure Subscription

The new app registration3 needs to connect to Azure Key Vault. However, it also needs

Reader permissions to the Azure subscription. In this step we will configure these

permissions:

• Go back to the Azure Portal home page

• Enter “Subscriptions” in the top search bar and select “Subscriptions”

• Select the subscription in which the Key Vault will be created

• In the “Subscriptions” view, click “Access Control (IAM)”

3 Use App Registration nr 2. See paragraph 2.3 for more information.

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 34

• Then select the “Role assignments” tab

• Click the “Add” button and then click “Add role assignment”

• Type “Reader” in the search bar and select the “Reader” role

• Click “Next” to proceed to selecting the Members

• Click the “Select members” button

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 35

• Enter “Microsoft365DSC_DevOpsPipeline” in the Select bar and click the found

member

• Validate that the app registration has been moved to the “Selected members” section

and click “Select” to confirm this selection

• Click the “Review + assign” button on the bottom of the screen to review the

selections.

• Click the “Review + assign” button again to assign the permissions.

• Validate that the service principal is now present in the Readers group

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 36

4.5.3 Create a new Azure Key Vault

The solution needs an Azure Key Vault to which the app registration4 is granted permissions.

In this step we will create a new Key Vault and grant the app registration the required

permissions:

• Log into the Azure Portal

• Enter "Key vault" in the top search bar and select "Key vaults"

• Click "Create" to create a new Key Vault

• Enter the desired Resource group, Name and Region and then click "Review + create"

4 Use App Registration nr 2. See paragraph 2.3 for more information.

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 37

• Review the settings and click "Review + create" to create the Key Vault

• The Key Vault will be created

• Go to the created Key Vault by clicking "Go to resource"

• Click "Access policies" and click "Create"

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 38

• Select the "Get" and "List" permissions from "Secret permissions" and “Certificate

permissions”:

• Click Next, then select the "Select principal" option, enter the Service Principal Name

you created in the previous paragraph (default “Microsoft365DSC_DevOpsPipeline”) in

the search box on the right, select your principal and click "Select".

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 39

• Click Next to skip through the Application (optional) screen, validate that everything is

configured correctly and click "Create"

• Next you should see the message that the Key Vault was updated successfully

4.5.4 Adding a Service Connection to Azure to the Azure DevOps project

Now that the Key Vault has been created, a service connection can be created in Azure

DevOps. DevOps will use this service connection to connect to Azure Key Vault. In this step

we will create a new service connection in Azure DevOps:

• Open the Azure DevOps Portal

• Browse to your project

• Click "Project Settings" in the lower left corner

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 40

• Scroll to the "Pipelines" section and select "Service connections*"

• Click "Create service connection"

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 41

• Select "Azure Resource Manager" and click “Next”

• Select “Service principal (manual)” and click “Next”

NOTE: We are using the already created Service Principal Name

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 42

• Enter the information you documented when creating the App Registration5

(paragraph 4.5.1):

a. Enter the GUID of the subscription in which the Key Vault was created as the

“Subscription Id”

b. Enter the name of the subscription in which the Key Vault was created as the

“Subscription Name”

c. Enter the documented value “Application (client) ID” as the "Service principal

client ID"

d. Enter the documented value “Secret" as the "Service principal key"

e. Enter the documented value “Directory (tenant) ID” as the "Tenant ID"

(potentially already populated)

f. Enter a "Service connection name", for example “KeyVaultConnection”

• Click "Verify" to validate the entered information. The status "Verified" (in green)

should appear behind the Verify button.

Note: If you get an Access Denied error, check if you have added the App

Registration to the Reader role in your Azure Subscription.

5 Use App Registration nr 2. See paragraph 2.3 for more information.

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 43

• Make sure the "Grant access permission to all pipelines" is not checked and click

"Verify and save"

• The "Service connection" is now created and displaying

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 44

5 Configuring Azure DevOps
Now that all prerequisites have been created, we can fully configure the solution in Azure

DevOps.

5.1 Populate scripts
The newly created Azure DevOps project contains a Git repository to which all scripts of this

solution must be added. In this step we will upload the scripts of the solution to the

repository in Azure DevOps:

• Download and install Visual Studio Code from https://code.visualstudio.com

• Download and install Git from https://git-scm.com

o Download the most recent version of Git by clicking the "Download" button

o Run the downloaded installer and use the default settings

• Download the DSC scripts from https://aka.ms/M365DSCWhitepaper/Scripts

o This package contains several scripts, check chapter 8 “Script details” for more

details.

• Upload the scripts to the DevOps repository

o Open Azure DevOps Portal and browse to your project

o Click the "Repos" icon in the left menu

https://code.visualstudio.com/
https://git-scm.com/
https://aka.ms/M365DSCWhitepaper/Scripts

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 45

o Click on "Clone in VS Code" (acknowledge any browser notifications for

opening any files)

o Acknowledge that Visual Studio Code can open the external URL by clicking

"Open"

o Select “C:\Source” as the source folder (create if it does not exist) and select

"Select Repository Location"

o Login with your Microsoft 365 admin account

o Click "Open" in the bottom right corner to open the cloned folder

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 46

o The repository is now available (but still empty) in Visual Studio Code

o Open Windows Explorer and browse to your C:\Source\<project> folder

o Copy the script files from the script download package to this folder

o Copy the DSCCertificate.cer file which you created in paragraph 4.1.4 to the

folder

o You will see the following file listing:

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 47

o Open the file “Datafiles\Production.psd1” and update:

• The placeholder “<M365AdminAccount>” to the user principal name

of the DSC admin user we created in paragraph 4.2.1

• The placeholder “<appid>” to the application id created earlier in

paragraph 4.2.2

• The placeholder “<certthumb>” to the thumbprint of the Microsoft

365 authentication certificate created in paragraph 4.1.3

• The placeholder “<tenantURL>” to the URL of your tenant, like

“contoso.onmicrosoft.com”

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 48

o Open the file “build.ps1” and update the $VaultName variable on line 27 with

the name of the Azure Key Vault you have created in paragraph 4.5.3

o Open the file “deploy.ps1” and update the $VaultName variable on line 33

with the name of the Azure Key Vault you have created in paragraph 4.5.3

o Click on the Git Source Control icon in the left menu, type a commit message

(e.g. "Initial upload") and click the checkmark icon

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 49

o Click "Always" if you get the message that there are no staged changes to

commit.

o If you get an error about an unknown e-mail address, run the following

commands with your own information and retry the commit:

o Click the three dots icon and select "Push, Pull > Sync" to synchronize your

local changes with Azure DevOps

o You might get the below message when running the sync. Click "OK" to

publish the branch to DevOps

git config --global user.email <email>

git config --global user.name "<your_name>"

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 50

o Validate a successful sync by opening the Azure DevOps Portal, browsing to

Repos and validating that all files have been uploaded

5.2 Add secrets to your Key Vault
All the secrets and certificates used by the solution need to be added to the Azure Key Vault.

The solution contains a script that simplifies this process. It reads all used accounts and

certificates from the PowerShell data file you updated in the previous step

(DataFiles\Production.psd1) and asks for the corresponding passwords. It then adds these to

Azure Key Vault, using a specific naming standard.

In this step we are going to use this script to populate all required Key Vault items:

Run the provided script and follow the instructions:

• Log on / connect to the machine where you cloned your repository

• Open an elevated Windows PowerShell window

• Switch locations to the folder C:\Source\M365Automation\SupportScripts

• Run the following commands:

Note: Currently this solution contains just one data file: Production.psd1. You can

extend the solution with additional environments, like Test and Acceptance. See

paragraph 1.2 for more information.

When you do, you can simply use the name of the added data files for the DataFile

parameter of the script.

Install-Module Az.KeyVault

.\PopulateKeyVault.ps1 -VaultName <name_of_your_keyvault>

-DataFile Production

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 51

• This script will now read the data file and ask for all passwords and certificates it finds.

If a secret is already present in the Key Vault, you are asked if you want to overwrite it

or not.

5.3 Configure Azure DevOps project

5.3.1 Create Build pipeline

The Build pipeline will compile the DSC configurations into MOF files and create a

deployment package. In this step we will create a new Build pipeline:

• Browse to the Azure DevOps Portal

• Click "Pipelines" and click "Create Pipeline"

• Select "Azure Repos Git"

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 52

• Click the name of your Project

• Select the “Existing Azure Pipelines YAML file”

• Select the file “azure-pipelines.yml” and click “Continue”

• The pipeline then shows you the azure-pipelines.yml file you uploaded in a previous

step

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 53

• Select "Run" to start the pipeline

• The pipeline is created and started. On the page that is opened, you see the details of

that pipeline run. However, it will not yet start.

• If you wait a couple of seconds, the page is refreshed, and you can see that you first

need to provide permissions on the Service Connection. Click on the “View” button

• Click on the “Permit” button to provide permissions to the “KeyVaultConnection”

Service Connection

• On the dialog that appears, click “Permit” once more

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 54

• After a couple of seconds, the pipeline will start running and the job is executed

• Check if the pipeline has completed successfully

• When you click the pipeline, you can see the history of all runs

• When you click a run, you can see the logging and other details.

5.3.2 Create the Deployment Release pipeline

The solution uses a release pipeline to deploy new configurations to the target environments.

Currently we are only deploying to one environment (Production), but you can easily extend

the number of environments by adding a stage for each environment.

In this step we are going to configure this release pipeline:

• Go to the Azure DevOps Portal

• Click "Pipelines", click "Releases" and then click "New pipeline"

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 55

• Select "Empty job"

• Give the Stage a name and close the pane

• Click "Add an artifact"

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 56

• Under "Source" select the build pipeline

• After selecting the Source, more options will appear. Leave them as default and click

"Add".

NOTE: Notice the "Source alias" value. We need this value in a subsequent step.

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 57

• Click ‘Add’

• Configure the Release pipeline triggers by clicking the Lightning icon next to Artifacts

• Enable the "Continuous deployment trigger", under "Build branch filters" click the

drop-down next to "Add" and select "The build pipeline's default branch"

• Make sure the branch has been added successfully and close the pane

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 58

• Select "Tasks > <Stage name>"

• Select the task "Agent job" in the left part of the pane and change the "Agent pool" to

"Microsoft365DSC". Leave the rest as default.

• Click the "+" next to "Agent Job"

• Search for "Azure PowerShell", select "Azure PowerShell" and click “Add”

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 59

• Select the "Azure PowerShell" task

• In the configuration window for the Azure PowerShell task, configure the following

settings:

o Azure Subscription: “KeyVaultConnection” or whatever name you gave the

service connection

o Select "Script File Path" under "Script Type" and browse to the “deploy.ps1”

file by clicking the “...” button

o Enter “-Environment Production” as Script Arguments

o Select “Stop” as ErrorActionPreference and check the “Fail on Standard Error”

checkbox

o Change the ‘Azure PowerShell Version’ to “Latest installed version”

• Open the “Advanced” section and make sure the Working Directory matches the path

of the previous step (copy/paste if required).

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 60

• Click "Save". Use "\" as the folder and add a comment if you want. Click "OK"

• Hover over the “New release pipeline” name and click on the pen icon that appears

behind the title

• Enter a name for the pipeline, like “Deploy Configurations” and click “Save”

• Add a change comment if you want and click "OK"

• Click "Create release" to test the created Release pipeline.

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 61

• Leave everything as default and click "Create"

• Click "Release-<nr>" in the top bar to open the release and review its progress

• Review the progress

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 62

• Click the stage for more details

• When the release completes successfully, all steps should have green check marks.

5.3.3 Validate that changes to the config are deployed successfully

• Make sure the following setting is configured:

SharePoint Admin Center > Policies > Access control > Apps that don’t use modern

authentication

• The above setting is configured by the "LegacyAuthProtocolsEnabled" DSC setting

that can be found in

“M365Config\0.0.1\DscResources\SharePoint\SharePoint.schema.psm1” in the

repository:

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 63

• Change this setting from "$true" to "$false"

• Save the file, go to the Git Source Control section, enter a commit description, commit

the change and sync the repository with Azure DevOps

• Open the Build Pipeline, which should have started

• Once completed, the Release pipeline should automatically start

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 64

• When the Release pipeline completes, the setting should now have changed in the

SharePoint Admin Portal

• Go to the SharePoint Admin Portal and verify if that is actually the case

5.3.4 Create a scheduled Compliancy Test Release pipeline

The solution uses a scheduled pipeline to periodically check if the environments are still in

the desired state and sends a notification of the results to either an email address or a Teams

channel. In this step we are going to configure this test pipeline:

• First decide if you want to send a message to a Teams channel or an e-mail message:

o Teams: Make sure you set up a webhook on the Teams channel you want to

use. To learn how to do this, check-out this article:

https://learn.microsoft.com/en-us/microsoftteams/platform/webhooks-and-

connectors/how-to/add-incoming-webhook#create-an-incoming-webhook

o E-mail: Make sure you have an App Registration6 with App Secret configured

in Azure Active Directory, which has the “Graph > Mail.Send” permissions

granted:

https://learn.microsoft.com/en-us/graph/auth-register-app-v2

https://learn.microsoft.com/en-us/graph/auth-v2-service#2-configure-

permissions-for-microsoft-graph

• Update the values in the “checkdsccompliancy.ps1” script with the correct values:

o When using Teams, set the useTeams variable to $true and update the

“teamsWebhook” variable with the URL created when configuring the

webhook on the Teams channel

6 Use App Registration nr 3. See paragraph 2.3 for more information.

https://learn.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/how-to/add-incoming-webhook#create-an-incoming-webhook
https://learn.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/how-to/add-incoming-webhook#create-an-incoming-webhook
https://learn.microsoft.com/en-us/graph/auth-register-app-v2
https://learn.microsoft.com/en-us/graph/auth-v2-service#2-configure-permissions-for-microsoft-graph
https://learn.microsoft.com/en-us/graph/auth-v2-service#2-configure-permissions-for-microsoft-graph

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 65

o When using E-mail, set the useMail variable to $true and update the following

variables:

• mailAppId: The Application ID of the App Registration

• mailAppSecret: The generated secret of the App Registration

• mailTenantId: The Tenant ID of the App Registration

• mailFrom: The user principal name of a user in the tenant

• mailTo: The mail address of the user the mail should be sent to.

Now configure the Test release pipeline:

• Go to the Azure DevOps Portal

• Click "Pipelines", click "Releases" and then click "New > New release pipeline"

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 66

• Select "Empty job"

• Give the Stage a name and close the pane

• Click "Add an artifact"

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 67

• Under "Source" select the build pipeline

• After selecting the Source, more options will appear. Leave them as default and click

"Add".

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 68

• Configure the Release pipeline triggers by clicking the “Schedule not set” below

Artifacts

• Enable the schedule by moving the slider to “Enabled” and configure the schedule

shown below (or your own schedule). When done, close the window by clicking the

“x” in the upper right corner

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 69

• Edit the pipeline name by clicking the “New release pipeline” in the top of the screen

and entering “Test DSC Compliancy”

New name:

• Select "Tasks > <Stage name>"

• Select the task "Agent job" in the left part of the pane and change the "Agent pool" to

"Microsoft365DSC". Leave the rest as default.

• Click the "+" next to "Agent Job"

• Search for "Azure PowerShell", select "Azure PowerShell" and click “Add”

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 70

• Select the "Azure PowerShell" task

• In the configuration window for the Azure PowerShell task, configure the following

settings:

o Azure Subscription: “KeyVaultConnection” or whatever name you gave the

service connection

o Select "Script File Path" as "Type" and browse to the “checkdsccompliancy.ps1”

file by clicking the “...” button

o Select “Stop” as ErrorActionPreference and check the “Fail on Standard Error”

checkbox

o Ensure ‘Latest installed version’ is selected under Azure PowerShell Version

• Open the “Advanced” section and make sure the Working Directory is matching the

path of the previous step.

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 71

• Click "Save". Use "\" as the folder and add a comment if you prefer. Click "OK"

• Click "Create release" to test the created Release pipeline, which will run a DSC

Compliancy check. Leave options as default and click “Create”.

• When done and all is configured correctly, you will receive a notification either via

Teams or via E-mail.

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 72

6 Troubleshooting

6.1 Error: Service connection could not be found
When running a Release pipeline, you might run into the following error:

If this is the case, please check with which name you have created the service connection in

paragraph 4.5.4 and the used “Azure Subscription” property selected while creating the

Release pipelines in paragraphs 5.3.2 and 5.3.4.

6.2 Error: Release pipeline throws an error about the PSGallery not found
When you run a Release pipeline and are receiving an error about the PSGallery not being

found, please log onto the VM with the account of the DevOps agent. That will run the Out-

of-the-Box Experience wizard and configure the PSGallery for you.

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 73

7 Security Enhancements

7.1 Using Azure Conditional Access to secure service account

Azure Conditional Access7 can be used to prevent the created service account login into

Microsoft 365, except when coming from a specified location / IP address. This section

describes the steps to implement this restriction.

Requirements:

• All VMs have a fixed IP address configured

• List of the IP addresses of all the VMs

• Name of DSC service account created in paragraph 3.1, e.g., “DscConfigAdmin”

Steps

• Open the Azure Portal (https://portal.azure.com)

• Go to Azure Active Directory

• Under “Manage”, click “Enterprise applications”

• Under “Security”, click “Conditional Access”

• First, we are going to create a Named Location

• Under “Manage”, click “Named locations”

7 Azure AD Premium P1 license required

https://portal.azure.com/

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 74

• Click “New location”

• Enter the required information:

o Name: “Azure Self Hosted VMs” (or any other name you want to use)

o Define the location using: “IP Ranges”

o IP ranges: The public IP address of the VM in the “123.123.123.123/32” format

• Click “Create” to create the Named location

• Next, select “Policies” and click “New policy”

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 75

• Create a new policy, using the following settings:

o Name: “Conditional Access for DSC Service Account” (or the name you would

like to use)

o Users and groups > Include

▪ Select ”Select users and groups”

▪ Check “Users and groups”

▪ Search and select the DSC Service Account

• Cloud apps or actions: Select “All cloud apps”

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 76

• Conditions > Locations

o Include: “Any location”

o Exclude: Select “Selected locations” and select the newly created Named

location “Azure Self Hosted VMs”

• Access controls > Grant

o Select “Block access”

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 77

• Under “Enable policy”, select “On” to activate the policy and click “Create”

• The DSC service account can now only be used to authenticate from the Azure

DevOps Self Hosted VMs

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 78

8 Script details
This whitepaper uses some pre-created scripts. You can use these scripts as-is or tailor them

to your own situation. This section describes what each script is for.

You can download the script package at:

https://aka.ms/M365DSCWhitepaper/Scripts

The package contains these files:

File name Description

.gitattributes File used by Git, which specifies how each type of file

should be handled. Usually there is no need to

update this file.

.gitignore File used by Git, which specifies all files and folders

Git must ignore. Usually there is no need to update

this file.

build.ps1 The script that is responsible for configuring the

Microsoft hosted agent, retrieving the service

account password from Azure Key Vault and

compiling the DSC MOF file.

Checkdsccompliancy.ps1 The script that used by the Test DSC Compliancy

pipeline to check all environment on compliance

with the Desired State and send the results via Email

or Teams channel message.

deploy.ps1 The script that is responsible for configuring the self-

hosted agent and deploying the DSC MOF file to the

LCM of the virtual machine.

DscResources.psd1 Data file that specifies the version of

Microsoft365DSC to be used. If you want to use a

different version of Microsoft365DSC, just update

this file.

M365Configuration.ps1 The master DSC configuration file that orchestrates

the various composite resources and passes the

provided credentials/app registration8 info to those

resources.

ReadMe.md A project description file in Markdown format. This

will be displayed when opening the repository in

Azure DevOps.

Folder: DataFiles PowerShell data files for each environment that

should be managed. The solution only contains one

file but can be extended when required. See

paragraph 1.2 for more info.

Production.psd1 Data file with all information for the environment

called “Production”.

8 Use App Registration nr 1. See paragraph 2.3 for more information.

https://aka.ms/M365DSCWhitepaper/Scripts

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 79

Folder: M365Config Composite DSC resource used by the solution

Folder: DscResources

Folder: Exchange

Exchange.psd1 Resource data file, which specifies the details of the

resource

Exchange.schema.psm1 Composite resource code. This file defines the

desired state for the Exchange resource. Add

Exchange configurations to this file.

Folder: Office365

Office365.psd1 Resource data file, which specifies the details of the

resource

Office365.schema.psm1 Composite resource code. This file defines the

desired state for the Office365 resource. Add

Office365 configurations to this file.

Folder: PowerPlatform

PowerPlatform.psd1 Resource data file, which specifies the details of the

resource

PowerPlatform.schema.psm1 Composite resource code. This file defines the

desired state for the Power Platform resource. Add

Power Platform configurations to this file.

Folder: SecurityCompliance

SecurityCompliance.psd1 Resource data file, which specifies the details of the

resource

SecurityCompliance.schema.psm1 Composite resource code. This file defines the

desired state for the SecurityCompliance resource.

Add Security & Compliance configurations to this

file.

Folder: Teams

Teams.psd1 Resource data file, which specifies the details of the

resource

Teams.schema.psm1 Composite resource code. This file defines the

desired state for the Teams resource. Add Teams

configurations to this file.

Folder: SharePoint

SharePoint.psd1 Resource data file, which specifies the details of the

resource

SharePoint.schema.psm1 Composite resource code. This file defines the

desired state for the SharePoint resource. Add

SharePoint configurations to this file.

M365Config.ps1 Module manifest file for the composite resource

Folder: Pipelines The configuration file for the Azure DevOps Build

Pipeline. This file defines which steps are required to

build the DSC MOF file.

azure-pipeline.yml The Build pipeline definition used in this solution.

The file defines to first run the Build script and when

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 80

that completes successfully, package the results as

an artifact.

Folder: SupportScripts Scripts used during configuration of the solution.

Not used during by any of the pipelines.

PopulateKeyVault.ps1 Script used to populate all required items in Azure

Key Vault. It is using the specified data file to

determine what items to create.

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 81

9 Learning materials

9.1 Desired State Configuration

• Microsoft Learn: "Getting Started with PowerShell Desired State Configuration"

o https://docs.microsoft.com/en-us/shows/getting-started-with-powershell-dsc/

• Microsoft Learn: "Advanced PowerShell Desired State Configuration"

o https://docs.microsoft.com/en-us/shows/advanced-powershell-dsc-and-

custom-resources/

• Desired State Configuration Overview for Engineers

o https://learn.microsoft.com/en-us/powershell/dsc/overview/DscForEngineers

• Creating configurations

o Configurations: https://learn.microsoft.com/en-

us/powershell/dsc/configurations/configurations

o Write, Compile, and Apply a Configuration: https://learn.microsoft.com/en-

us/powershell/dsc/configurations/write-compile-apply-configuration

o DependsOn: https://learn.microsoft.com/en-

us/powershell/dsc/configurations/resource-depends-on

o DSC Resources: https://learn.microsoft.com/en-

us/powershell/dsc/resources/resources

• Using configuration data in DSC

o https://learn.microsoft.com/en-us/powershell/dsc/configurations/configData

o https://learn.microsoft.com/en-

us/powershell/dsc/configurations/separatingEnvData

• Composite resources

o https://learn.microsoft.com/en-

us/powershell/dsc/resources/authoringresourcecomposite

• Secure the MOF file

o https://learn.microsoft.com/en-us/powershell/dsc/pull-server/secureMOF

o https://learn.microsoft.com/en-

us/powershell/dsc/configurations/configDataCredentials

• Local Configuration Manager

o Configuring: https://learn.microsoft.com/en-us/powershell/dsc/managing-

nodes/metaConfig

o Push/Pull model: https://learn.microsoft.com/en-us/powershell/dsc/pull-

server/enactingConfigurations

• Apply, Get, and Test Configurations on a Node

o https://learn.microsoft.com/en-us/powershell/dsc/managing-nodes/apply-

get-test

https://docs.microsoft.com/en-us/shows/getting-started-with-powershell-dsc/
https://docs.microsoft.com/en-us/shows/advanced-powershell-dsc-and-custom-resources/
https://docs.microsoft.com/en-us/shows/advanced-powershell-dsc-and-custom-resources/
https://learn.microsoft.com/en-us/powershell/dsc/overview/DscForEngineers
https://learn.microsoft.com/en-us/powershell/dsc/configurations/configurations
https://learn.microsoft.com/en-us/powershell/dsc/configurations/configurations
https://learn.microsoft.com/en-us/powershell/dsc/configurations/write-compile-apply-configuration
https://learn.microsoft.com/en-us/powershell/dsc/configurations/write-compile-apply-configuration
https://learn.microsoft.com/en-us/powershell/dsc/configurations/resource-depends-on
https://learn.microsoft.com/en-us/powershell/dsc/configurations/resource-depends-on
https://learn.microsoft.com/en-us/powershell/dsc/resources/resources
https://learn.microsoft.com/en-us/powershell/dsc/resources/resources
https://learn.microsoft.com/en-us/powershell/dsc/configurations/configData
https://learn.microsoft.com/en-us/powershell/dsc/configurations/separatingEnvData
https://learn.microsoft.com/en-us/powershell/dsc/configurations/separatingEnvData
https://learn.microsoft.com/en-us/powershell/dsc/resources/authoringresourcecomposite
https://learn.microsoft.com/en-us/powershell/dsc/resources/authoringresourcecomposite
https://learn.microsoft.com/en-us/powershell/dsc/pull-server/secureMOF
https://learn.microsoft.com/en-us/powershell/dsc/configurations/configDataCredentials
https://learn.microsoft.com/en-us/powershell/dsc/configurations/configDataCredentials
https://learn.microsoft.com/en-us/powershell/dsc/managing-nodes/metaConfig
https://learn.microsoft.com/en-us/powershell/dsc/managing-nodes/metaConfig
https://learn.microsoft.com/en-us/powershell/dsc/pull-server/enactingConfigurations
https://learn.microsoft.com/en-us/powershell/dsc/pull-server/enactingConfigurations
https://learn.microsoft.com/en-us/powershell/dsc/managing-nodes/apply-get-test
https://learn.microsoft.com/en-us/powershell/dsc/managing-nodes/apply-get-test

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 82

• Debugging DSC

o https://learn.microsoft.com/en-

us/powershell/dsc/troubleshooting/debugResource

9.2 Microsoft365DSC

• Microsoft365dsc.com

o https://microsoft365dsc.com/

• Microsoft365DSC promotion video

o https://aka.ms/m365dscpromo

• GitHub repository

o https://github.com/microsoft/Microsoft365DSC

• What is Configuration-as-Code?

o http://nikcharlebois.com/what-is-configuration-as-code

• Microsoft365DSC YouTube channel

o https://www.youtube.com/channel/UCveScabVT6pxzqYgGRu17iw

9.3 Git

• Git manual

o https://git-scm.com/book/en/v2

• PluralSight: "How Git Works” (subscription required)

o https://app.pluralsight.com/library/courses/how-git-works/table-of-contents

• PluralSight: "Mastering Git" (subscription required)

o https://app.pluralsight.com/library/courses/mastering-git/table-of-contents

https://learn.microsoft.com/en-us/powershell/dsc/troubleshooting/debugResource
https://learn.microsoft.com/en-us/powershell/dsc/troubleshooting/debugResource
https://microsoft365dsc.com/
https://aka.ms/m365dscpromo
https://github.com/microsoft/Microsoft365DSC
http://nikcharlebois.com/what-is-configuration-as-code
https://www.youtube.com/channel/UCveScabVT6pxzqYgGRu17iw
https://git-scm.com/book/en/v2
https://app.pluralsight.com/library/courses/how-git-works/table-of-contents
https://app.pluralsight.com/library/courses/mastering-git/table-of-contents

Managing Microsoft 365 in true DevOps style with Microsoft365DSC and Azure DevOps

 Page 83

10 Acronyms

Acronym Meaning

CD/CI Continuous Development / Continuous Integration

DSC Desired State Configuration

LCM Local Configuration Manager

MFA Multi-Factor Authentication

MOF Managed Object Format

VM Virtual Machine

